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In this work, we introduce a new multi-mode (MM) delay
differential equation (DDE) model suited for simulations of the
Fabry-Perot type diode laser with an optical feedback from the
external cavity (EC), see Fig. 1(a).
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Fig. 1. Schematic representations of the diode laser with an external cavity.
(a): linear configuration, as considered in the TW model. (b): ring diode laser
configuration (left) with a localized filtering element (hatched box) and the
filtered optical feedback from the external cavity (right), as considered in the
new MMDDE model.

To demonstrate advantages of this new model, we consider
and compare three models describing nonlinear dynamics of
complex slowly varying amplitudes of optical fields E and
carrier densities n in the FP laser with a simple EC. Our basic
approach is given by the traveling wave (TW) model, which is
a 1(space)+1(time) dimensional system of partial differential
equations describing the longitudinal and temporal evolution of
counter-propagating optical fields, E+ and E−, and dynamics
of spatially averaged carrier density [1]. Another approach is a
well-known delay differential equation (DDE) model of Lang-
Kobayashi (LK) type, which was originally used for investiga-
tion of dynamics in single-mode lasers with long ECs and weak
optical feedback [2]. The last MMDDE model proposed in this
work is derived from the TW model under assumptions of ring
configuration of the diode laser and unidirectional propagation
of the optical field within this ring, see Refs. [3], [4] and
Fig. 1(b). In contrast to the LK type models, this MMDDE
model properly accounts for multiple longitudinal modes of
the diode laser and, therefore, admits considering moderate
and strong optical feedback regimes. Such kind of feedback is
typical for a large class of external cavity diode lasers, where
the optical length of the EC is comparable to the diode length
[5], whereas the field reflectivity at the rear facet of the diode
is reduced, such that the solitary lasing can be achieved only
at very high bias currents. On the other hand, comparing to
the TW model, our new MMDDE model is relatively simple
and admits fast numerical integration, numerical bifurcation
analysis, and more detailed analytic investigations.

External cavity. In all three cases, we assume that the action
of the EC, i.e., the relation between the optical field Fi(t) re-
injected into the diode and the field Fe(t) emitted from the
diode is given by the linear operator F . For the simple EC
determined by an external mirror, F is, basically, a simple

time-delay operator:

Fi(t) = [FFe] (t) = KeiφFe(t−τ), (1)

where τ is the field round-trip time in the EC, whereas K and
φ are the transmission factor and the phase shift of the complex
field amplitude during this round-trip. More sophisticated ECs
can contain several reflectors or different frequency filtering
elements, such as passive resonators or Bragg gratings. The
action of various objects of the EC can be approximated by
linear continuous time filters described by ODEs. For example,
the delay operator (1) can be interpreted as a broad Lorentzian
filter,

Fi(t)=[FFe](t) = γ̃Keiφ
∫ t−τ
−∞ e

−γ̃(t−τ−ν)Fe(ν)dν

⇒ 1
γ̃
d
dtFi(t) = KeiφFe(t− τ)− Fi(t),

(2)

in the limit case of γ̃ → +∞. For the sake of simplicity,
we consider only the simplest case of the EC determined by
Eq. (1) or Eq. (2) in this work.

Traveling wave model. After a suitable normalization [6],
the spatially-distributed TW model within the laser diode can
be written as

(∂t ± ∂z)E±=
(
(1+iαH)n− ξ0

L − P
)
E±,

PE±= ḡ
2 (E±−P±) , d

dtP±= γ̄E±+(iω̄−γ̄)P±,
ε−1 d

dtn = J − n−<〈(E, [2n+ 1− 2P]E)〉 ,
(3)

where E = (E+, E−)T , (·, ·) and 〈·〉 are scalar product of
vector functions and spatial average, respectively. The complex
factor ξ0 is determined by the relation e2ξ0 = −r∗frre−2χ(0),
where rf and rr are complex field amplitude reflection co-
efficients at the the front (z = −L) and rear (z = 0)
diode facets, whereas χ(ω) = ḡL

2
i(ω−ω̄)

γ̄+i(ω−ω̄) . To close the
model equations, we define the following field reflection-
transmission-reinjection conditions at the diode facets:

E+(−L, t) = −r∗fE−(−L, t),(
Fe(t)
E−(0, t)

)
=

(
tr −r∗r
rr tr

)(
E+(0, t)
Fi(t)

)
,

(4)

where tr=
√

1−|rr|2 is the field transmission through the rear
facet, whereas Fe and Fi are related by Eq. (1).

Lang-Kobayashi type model. The normalized LK type
model can be written as

d
dtE = (1+iαH)nE + CFi, Fi(t) = [FE] (t),
ε−1 d

dtn = J − n− (2n+ 1)|E|2, (5)

where the operator F and parameters J , ε and αH are the
same as in the TW model discussed above. The coefficient
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C =
t2r

2rrL
relates the feedback rate (which in non-scaled LK

model would have the dimension s−1) with the dimensionless
field transmission factor Keiφ from (1) [6].

Multi-mode DDE model. Following Ref. [3], we neglect
back propagating field E− in the TW model, assume the ring
configuration of the diode laser, and allow the spatial distribu-
tion of carriers. We assume that all distributed field amplitude
losses, frequency detuning, and field dispersion within the
diode are concentrated within a single point source [hatched
box in Fig. 1(b)], whereas the relation of the incident and
transmitted fields E′(t) and E′′(t) [see notations in Fig. 1(b)]
are defined by
d
dtE

′′(t) = (γ′ − iω̄) (µE′(t−∆)− E′′(t)) , where

γ′ = γ̄√
2ḡL

, µ = e−(1+iαH )L

rr
, ∆ =

ḡL−
√

2ḡL

γ̄ = τd − 2L.

After introducing forward along the characteristic line per-
formed sliding average ñ(t) = 1

2L

∫ z1
z0
n (ν, t+ ν − z0) dν,

resolving the unidirectional TW equation, eliminating E′, E′′,
Fe, and introducing new function F = 1

tr
Fi, we obtain the

following MMDDE model for lasers with an external feedback:
d
dtE = −

[
γ′−iω̄

]
E(t) + t2r [γ′−iω̄−γ̃]F (t)

+t2r
γ̃Keiφ

rr
[E(t− τ)− F (t− τ)]

+(γ′ − iω̄)e(1+iαH)ñ(t−τd)2LE(t− τd),
d
dtF = −γ̃F (t) + γ̃Keiφ

rr
[E(t− τ)− F (t− τ)] ,

ε−1 d
dt ñ = J − ñ− 1

2L

[
e[2ñ+1]2L − 1

]
|E|2 .

(6)

Comparison of models. Cavity modes (CMs) play a sig-
nificant role determining dynamics of the lasers with an
external feedback. The CMs, which are the steady states of the
corresponding system, can be defined by the threshold carrier
density n̄ and the relative optical frequency ω. The choice of
the scaling factor C in the LK model [6] and the parameters
γ′, µ, ∆ in the MMDDE model allow to get a best fitting of
the CMs in the reduced DDE models to the CMs of the TW
model.
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Fig. 2. Curves of CMs in the TW (thick grey), LK (thin solid) and MMDDE
(thin dashed) models for arbitrary φ and K = 0.02, K = 0.2, and K = 0.5,
whereas L = 3, τ = 13.5, αH = 1.2, rf =

√
0.3, rr = e−2.84/rf ≈ 0.1,

ω̄ = 0, ḡ = 6, γ̄ = 120, γ̃ = 500. Bullets on the corresponding curves show
location of the cavity modes for fixed φ = 0. An insert shows enlarged curves
for K = 0.02 in the vicinity of origin, (ω, n̄) = (0, 0).

Different curves in Fig. 2 represent all possible locations of
the CMs for fixed feedback amplitude factor K and arbitrary
feedback phase φ. It can be clearly seen, that for small K,

the CMs of the LK model provide a good approximation
of the CMs of the TW model in the vicinity of the origin
(ω, n̄) = (0, 0), see thin blue and thick grey solid curves within
the insert of Fig. 2. We note, however, that for small K and
fixed ϕ, the LK modes has a unique CM (blue diamond in
Fig. 2), whereas the TW model posses multiple CMs with
similar separation (∼ π/L) of mode frequencies ω and similar
thresholds n̄ (red bullets in Fig. 2). For moderate and large K,
the agreement between LK and TW equations is drastically
degraded: whereas CMs of the LK model are located on the
increasing ellipses centered around the origin (0, 0), the CMs
of the TW model are on a single, only slightly undulated
nearly horizontal non-connected curve. In contrast, the CMs
of our new MMDDE model are in nearly perfect agreement
with the CMs of the TW model for all values of K: see
indistinguishable thin dashed and thick grey curves in Fig. 2.
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Fig. 3. Changes of states during numerical integration of the TW and
MMDDE with increased and decreased ϕ. (a) and (b): main frequency and
mean carrier density as functions of ϕ. (c): same calculations in frequency-
density plane. K = 0.2, J = 2, ε = 4 · 10−3, whereas other parameters as
in Fig. 2.

Another comparison of the MMDDE and TW models is
presented in Fig. 3. Here, we have performed estimation of
the states for different values of the feedback phase factor
φ using direct numerical integration of two different models.
Panels (a) and (b) of this figure show the observed multiple
transitions between different CMs. All observed states are
also indicated by different bullets in frequency-carrier density
plane (panel (c) of the same figure). It is noteworthy that all
these states represent only those CMs which are located close
to the multiple-minima of the thick solid and thin dashed
curves corresponding to the case K = 0.2 in Fig. 2. The
frequency separation of these states is, approximately, π/L,
what correspond to the separation of the FP laser resonances.
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