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Fig. 2. A typical pro�le of (a) the group delay� 0(! ) and (b) GVD � 00(! )
that leads to the collision phenomenon shown in Fig. 1. Collision can only
be realized for initial DW frequency offsets in a small interval (shaded grey)
around the reference frequency of matching group velocity.

soliton) and b (for the DW) are governed by two coupled
NLSEs

i@z a −
� ′′a
2

@2
�  a +

n2a

c
! a

�
| a|2 + 2 | b|2

�
 a = 0; (1a)

i@z b −
� ′′b
2

@2
�  b +

n2b

c
! b

�
| b|2 + 2 | a|2

�
 b = 0: (1b)

We reformulated this system in the following three steps which
were suggested by observations in numerical simulations.

Firstly, the full solution of (1a) is approximated by a soliton
the parameters of which arez-dependent, i.e.,

 a (z; � ) =
1

� a

s
|� ′′a |c
n2a! a

exp [−i� a (� − � a) + i� a]

cosh [(� − � a)=� a]
(2)

with duration� a = � a(z), frequency offset� a = � a(z), delay
� a = � a(z), and phase� a = � a(z). In the absence of the DW

d� a
dz

=
d� a
dz

= 0;
d� a
dz

= � ′′a � a;
d� a
dz

= −� ′′a
� 2
a + � −2a

2
:

The latter equations have to be modi�ed to account for
interaction of the soliton with the DW.

Secondly, we insert| a|2 from (2) in (1b). The latter is
additionally linearized with respect to b, as the DW has much
lower intensity compared to the soliton. Now (1b) describes
the scattering problem of a plane wave at a squared hyperbolic
secant barrier. It can be solved analytically for a static soliton
barrier with the vanishing� a(z). To account for the soliton
motion, a suitable Galilei transformation is applied to the
standard scattering solution. The derived| b|2 is inserted in
(1a).

Thirdly, we revisit (1a) in which soliton perturbation theory
[8] results in �nal evolution equations for the soliton parame-
ters. Most importantly, we derive the following expression for
the evolution of the solitons frequency

d� a
dz

=
4�T
� aLa

Z 1

0

|F (a; b;c; � )|2 (2� − 1) d�; (3)
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Fig. 3. Initial effect on the soliton as predicted by perturbation theory (a), and
soliton de�ection at propagation distance of1m from full numerical simulation
(b).

where � a(z) = � a(0), the dispersion lengthLa = � 2
a=|� ′′a |

and � is the DW power normalized by that of the soliton.
Parameters that enter into the hypergeometric functionF are

a; b =
1

2
− i" ± is; c = 1− i"; s =

s

4
|� ′′a |
� ′′b

! b
! a

n2b

n2a
− 1

4
;

" =

�
Ω− � ′′a

� ′′b
� a

�
� a; T =

sinh2(�")
cosh2(�s) + sinh 2(�")

:

IV. RESULTS

Equation (3) provides a simple and effective tool to estimate
parameter ranges for initial parameters. We evaluatedd� a=dz
at z = 0 and for varyingΩ, as depicted in Fig. 3(a) for a
soliton with ! a = 1:25PHz and duration� a = 55fs. The
curve shows the interval of interaction. At its maximum we
expect to �nd the strongest initial effect on the soliton. Results
are qualitatively valid for simulations with full GNLSE. For
comparison, Fig. 3(b) shows� a at z = 1m. At the predicted
optimal Ω ≈ 0:05PHz the absolute soliton de�ection becomes
maximal.
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