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• Motivation for studying semiconductor optical amplifier switch fabrics
• Low latency reconfigurable interconnects in high performance computing
• Emerging scalable photonic integrated switch circuits
• Viability of multistage switch architectures for large scale interconnection

• Simulator architecture
• Multiwavelength emulator
• Power penalty estimation
• Performance mapping for multi-stage networks

• Switch fabric performance
• Calibration
• Scaling capacity - multi-wavelength operation
• Scaling connectivity - input power dynamic range

• Conclusions
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Low latency reconfigurable interconnects

• High performance computing, future server networks, requiring Terabit/second 
low latency interconnection with several tens of high bandwidth ports

• Sophisticated testbeds devised and implemented increasing numbers of groups

• Colourless SOA switches promising for routing of high capacity WDM packets.  
Good crosstalk, ease of use and integration being key.

• HOWEVER: Concerns over accumulating noise 
and distortion

Terabit/second 
SOA based
12x12 Data Vortex
Shacham
JLT, 23, (10), 
3066-3075,
(Oct 2005). 
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Emerging integrated switch technology
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• Highly cascadability demonstrated 
for quantum dot based switches 

Liu, CLEO 2006

• Uncooled power efficient (70ºC) 2x2 
QD switches demonstrated

Aw, CLEO 2008

• Low power penalty routing 
demonstrated with 4 input 4 output 
multi-stage switch circuits

Albores-Mejia, 
Photonics in Switching 2008

• Larger monolithic switch matrices 
now becoming tractable

BUT little study into the scaling limits 
for broadband SOA based switches

Integrated multistage circuits

Discrete cascaded QD SOAs
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Multi-stage switch fabrics: Clos networks

• Clos networks offer good compromise between number of stages (power 
consumption, power penalty) and connection scaling

• Scaling assessed by studying the data integrity at the physical layer for varied 
data capacity per port for three stage networks

• Large networks feasible by introducing increasing
numbers of splitters at each stage
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Wavelength multiplexed link simulation

Time decorrelated
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Bessel filter in 
frequency domain

• Mixed time and frequency domain units cascaded for 
power penalty evaluation from Q factor
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Power penalty evaluation
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• Time resolved receiver output time-wrapped to generate eye diagram

• Centre of eye opening windowed by locating level transitions

• Probability density functions generated from ones (black) and zeros (red)

• Bit error rates correlate with Q factors for Gaussian PDFs

• Specify power penalty at BER=10-9

Deviation from 
thermally limited 

error rate with 
SOA switches 

introduced

E. Desurvire, Erbium doped fiber amplifiers, Wiley
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Data integrity 
assessment

Q factor

Switch fabric definition

Splitter losses
Travelling wave 
and carrier rate 
equation model

Splitter losses

Optical field recirculated for 0, 1, 2 and 3 loops 

Wavelength 
multiplexed 

input 
N x 10Gb/s

Travelling wave algorithm as per
Distributed Feedback Semiconductor Lasers
Carroll, Whiteaway, Plumb, IEE, 1998

Current (gain) 
variation

Architecture (loss) 
variation

Architecture (loss) 
variation

• Splitter losses scanned to study range of connection configurations

• Currents scanned to identify local optima

• Input power scanned at system input
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Travelling wave model calibration
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• Calibration of model 
for performance of uncooled 
2x2 switch circuits

• Benchmarked as a function
of input current and input
power

• Logarithmic gain carrier 
relationship.  No wavelength 
dependence implemented.

Experimental data from 
Aw, CLEO 2008
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Power penalty performance

• Data shown for three stage 
16x16 switch implemented with 
4x4 stages

• Extensive operating range for 
single wavelength operation

• Distortion evident at high 
input power and high current

• Distortion threshold further 
reduced through increased 
aggregate power

• Optimum current conditions 
selected for broader 
architecture comparisons
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Multi-stage input power dynamic range
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• Multiple simulations for broader 
range of power maps enables 
comparison of connection levels

• Dynamic range reduced at 
each consecutive stage

• Distortion limited at high power

• Noise limited at low power

• The combined effect ultimately 
limits feasible power maps and 
connectivity

• 1dB power penalty for 32x32

• 2dB power penalty for 64x64
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Conclusions
• Three stage switch fabrics analysed for Clos switching networks with SOAs

• Low penalty multiwavelength routing of 10x10Gb/s payloads shown

• High data capacity feasible in large scale switch fabrics

• 32x32 switch fabric feasible with 1dB power penalty

• 64x64 switch fabric indicates 2dB power penalty

• Further scaling conceivable with further active element optimisation

• Competive system level figures of merit

• <1W per 100Gb/s path indicating <10mW/Gb/s driver power efficiency

• Extrapolated 6.4Tb/s aggregate capacity for 64 ports at 10x10Gb/s

• Encouraging for next generation integrated switch technologies
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